Home » Further Mathematics » The images of points (2, -3) and (4, 5) under a linear transformation A are…

The images of points (2, -3) and (4, 5) under a linear transformation A are…

The images of points (2, -3) and (4, 5) under a linear transformation A are (3, 4) and (5, 6) respectively. Find the :

(a) matrix A ; (b) inverse of A ; (c) point whose image is (-1, 1).

Explanation

Let (A = begin{pmatrix} a & b \ c & d end{pmatrix}).

(T : begin{pmatrix} a & b \ c & d end{pmatrix} = begin{pmatrix} a & b \ c & d end{pmatrix} begin{pmatrix} 3 & 5 \ 4 & 6 end{pmatrix})

(2a + 3b = 3 … (1))

(4a + 5b = 5 … (2))

(2c + 3d = 4 … (3))

(4c + 5d = 6 …. (4))

Solving (1) & (2) :

((1) times 2 : 4a + 6b = 6 … (5))

((5) – (2) : b = 1)

(2a + 3(1) = 3 implies 2a = 0; a = 0)

((3) times 2 : 4c + 6d = 8 … (6))

((6) – (5) : d = 2)

(2c + 3(2) = 4 implies 2c = -2; c = -1)

(a) (therefore A = begin{pmatrix} 0 & 1 \ -1 & 2 end{pmatrix})

(b) Let the inverse of A be A(^{-1}).

(AA^{-1} = 1)

(begin{pmatrix} 0 & 1 \ -1 & 2 end{pmatrix} begin{pmatrix} w & x \ y & z end{pmatrix} = begin{pmatrix} 1 & 0 \ 0 & 1 end{pmatrix})

(begin{pmatrix} y & z \ -w + 2y & -x + 2z end{pmatrix} = begin{pmatrix} 1 & 0 \ 0 & 1 end{pmatrix})

(implies y = 1; z = 0)

(-w + 2y = 0 implies -w + 2 =0)

(-w = -2 implies w = 2)

(-x + 2z = 1 implies -x + 2(0) = 1)

(-x = 1 implies x = -1)

(therefore A^{-1} = begin{pmatrix} 2 & -1 \ 1 & 0 end{pmatrix})

(c) Let the point be (x, y).

(A : x to begin{pmatrix} 0 & 1 \ -1 & 2 end{pmatrix} begin{pmatrix} x \ y end{pmatrix} = begin{pmatrix} -1 \ 1 end{pmatrix})

(0 + y = -1 implies y = -1)

(-x + 2y = 1 implies -x + 2(-1) = 1)

(-x – 2 = 1 implies -x = 3)

(x = -3).

The point is (-3, -1).