Home » Further Mathematics » Further Mathematics Theory: (ii) Using your answer in b(i), solve the simultaneous equations

Further Mathematics Theory: (ii) Using your answer in b(i), solve the simultaneous equations

(a) Evaluate (int_{1} ^{2} frac{x}{sqrt{5 – x^{2}}} mathrm {d} x)

(b)(i) Evaluate: (begin{vmatrix} 2 & -3 & 1 \ 0 & 1 & -2 \ 1 & 2 & -3 end{vmatrix})

(ii) Using your answer in b(i), solve the simultaneous equations :

(2x – 3y + z = 10)

(y – 2z = -7)

(x + 2y – 3z = -9)

Explanation

(a) (int_{1} ^{2} frac{x}{sqrt{5 – x^{2}}} mathrm {d} x)

Let (u^{2} = 5 – x^{2}).

(2u mathrm {d} u = – 2x mathrm {d} x implies u mathrm {d} u = – x mathrm {d} x)

(int frac{x}{sqrt{5 – x^{2}}} mathrm {d} x = int frac{- u}{sqrt{u^{2}}} mathrm {d} u)

= (- int mathrm {d} u )

= (-[5 – x^{2}]_{1} ^{2})

= ((- (5 – 2^{2}) – (- (5 – 1^{2}))))

= (- 1 + 4 = 3)

(b)(i) (begin{vmatrix} 2 & -3 & 1 \ 0 & 1 & -2 \ 1 & 2 & -3 end{vmatrix})

= (2(-3 + 4) + 3(0 + 2) + 1(0 – 1) = 7)

(ii) (2x – 3y + z = 10)

(0x + y – 2z = -7)

(x + 2y – 3z = -9)

Let A be the matrix of coefficients.

(A = begin{pmatrix} 2 & -3 & 1 \ 0 & 1 & -2 \ 1 & 2 & -3 end{pmatrix})

We write the set of equations in matrix form, i.e Ax = B.

(begin{pmatrix} 2 & -3 & 1 \ 0 & 1 & -2 \ 1 & 2 & -3 end{pmatrix} begin{pmatrix} x \ y \ z end{pmatrix} = begin{pmatrix} 10 \ -7 \ -9 end{pmatrix}).

We find the inverse of A, A(^{-1}).

Determinant of A = 7.

Co-factors:

(A_{11} = + begin{vmatrix} 1 & -2 \ 2 & -3 end{vmatrix} = +(-3 + 4) = 1)

(A_{12} = – begin{vmatrix} 0 & -2 \ 1 & 2 end{vmatrix} = -(0 + 2) = -2)

(A_{13} = + begin{vmatrix} 0 & 1 \ 1 & 2 end{vmatrix} = +(0 – 1) = -1)

(A_{21} = – begin{vmatrix} -3 & 1 \ 2 & -3 end{vmatrix} = -(9 – 2) = -7)

(A_{22} = + begin{vmatrix} 2 & 1 \ 1 & -3 end{vmatrix} = +(-6 – 1) = -7)

(A_{23} = – begin{vmatrix} 2 & -3 \ 1 & 2 end{vmatrix} = -(4 – (-3)) = -7)

(A_{31} = + begin{vmatrix} -3 & 1 \ 1 & -2 end{vmatrix} = +(6 – 1) = 5)

(A_{32} = – begin{vmatrix} 2 & 1 \ 0 & -2 end{vmatrix} = -(-4 – 0) = 4)

(A_{33} = + begin{vmatrix} 2  & -3 \ 0 & 1 end{vmatrix} = +(2 – 0) = 2)

(therefore C = begin{pmatrix} 1 & -2 & -1 \ -7 & -7 & -7 \ 5 & 4 & 2 end{pmatrix})

(text{adj A} = C^{T} = begin{pmatrix} 1 & -7 & 5 \ -2 & -7 & 4 \ -1 & -7 & 2 end{pmatrix})

(A^{-1} = frac{text{adj A}}{|A|} = frac{1}{7} begin{pmatrix} 1 & -7 & 5 \ -2 & -7 & 4 \ -1 & -7 & 2 end{pmatrix})

(x = A^{-1} b = frac{1}{7} begin{pmatrix} 1 & -7 & 5 \ -2 & -7 & 4 \ -1 & -7 & 2 end{pmatrix} begin{pmatrix} 10 \ -7 \ -9 end{pmatrix})

= (frac{1}{7} begin{pmatrix} 14 \ -7 \ 21 end{pmatrix})

(begin{pmatrix} x \ y \ z end{pmatrix} = begin{pmatrix} 2 \ -1 \ 3 end{pmatrix})

(x = 2; y = -1 ; z = 3)